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SUMMARY

Here we describe analytical and numerical modi�cations that extend the Di�erential Reduced Ejector=
mixer Analysis (DREA), a combined analytical=numerical, multiple species ejector=mixing code devel-
oped for preliminary design applications, to apply to periodic unsteady �ow. An unsteady periodic �ow
modelling capability opens a range of pertinent simulation problems including pulse detonation engines
(PDE), internal combustion engine ICE applications, mixing enhancement and more fundamental �uid
dynamic unsteadiness, e.g. fan instability=vortex shedding problems. Although mapping between steady
and periodic forms for a scalar equation is a classical problem in applied mathematics, we will show
that extension to systems of equations and, moreover, problems with complex initial conditions are more
challenging. Additionally, the inherent large gradient initial condition singularities that are characteristic
of mixing �ows and that have greatly in�uenced the DREA code formulation, place considerable limi-
tations on the use of numerical solution methods. Fortunately, using the combined analytical–numerical
form of the DREA formulation, a successful formulation is developed and described. Comparison of
this method with experimental measurements for jet �ows with excitation shows reasonable agreement
with the simulation. Other �ow �elds are presented to demonstrate the capabilities of the model. As
such, we demonstrate that unsteady periodic e�ects can be included within the simple, e�cient, coarse
grid DREA implementation that has been the original intent of the DREA development e�ort, namely,
to provide a viable tool where more complex and expensive models are inappropriate. Copyright ?
2002 John Wiley & Sons, Ltd.

KEY WORDS: periodic �ow; combined analytical=numerical method; aerodynamic mixing; ejector
nozzle

INTRODUCTION

Ejector–mixer nozzle systems provide an important acoustic and thermal treatment technol-
ogy for high-speed civilian and military concepts, as well as, for currently deployed civilian
(Hushkit) and military turbofan propulsion systems [1]. Design of these propulsion systems

∗ Correspondence to: L. J. De Chant, Analytic Entrainment LLC, 1541 Summit Hills Drive NE, Albuquerque,
NM 87112, U.S.A.

† E-mail: ldechant@juno.com
Received 11 June 2001

Copyright ? 2002 John Wiley & Sons, Ltd. Revised 05 July 2002



1164 L. J. DE CHANT, J. A. SEIDEL AND T. R. KLINE

with an appropriate assessment of the scope of the design space at an adequate level of model
�delity, remains challenging. To begin to answer this need, a computer program Di�erential
Reduced Ejector=mixer Analysis (DREA) has been developed with the ability to run su�-
ciently fast so that it may be used either as a subroutine or called by an design optimization
routine [1–5].
DREA is an implementation based on a combined perturbation=numerical modelling method-

ology that provides a rigorously derived family of solutions that require minimal empirical
input. The base mathematical model is computationally more e�cient than classical bound-
ary layer but provides important two-dimensional information not available using quasi-1-d
approaches [6]. To resolve singular behaviour, the model utilizes classical analytical solution
techniques. Hence, analytical methods have been combined with e�cient numerical methods
to yield a hybrid �uid �ow model.
Preliminary design models for ejector–mixer nozzles have typically involved control vol-

ume based approaches [7–11]. Though simple and robust, control volume based models cannot
make any direct prediction about the streamwise length required to achieve a desired level of
mixing. An estimate of length or equivalently mixing rate is essential for aerospace design ap-
plications since length required for mixing translates directly to weight, a critical �ight design
constraint. Early models employed boundary layer or 2-d, inviscid (method of characteristics)
formulations to provide this type of information [12]. These models require that the primary
stream be supersonic. Turbulent boundary layer formulations include the studies by Hedges
and Hill [13, 14]. These method-of-characteristics and boundary layer models provide consid-
erably more information than their control volume based, 1-d counterparts, though again, at
greater computational cost. Further, boundary layer methods require the external imposition of
a pressure �eld, predicted either using free stream information or through a global mass con-
servation constraint. This approximation may be poor for �ows where the inlet static pressure
of the streams is signi�cantly di�erent.
Here we describe analytical methods and codes modi�cation that extend the DREA im-

plementation to apply to periodic unsteady �ow. This paper describes a continuation of the
process to extend the capabilities of the DREA code to a range of physically more challenging
problems. Major previous developmental e�orts have provided a capability for multiple stream
mix and multiple species reactive=combusting �ow models [3, 5, 15]. A logical extension to
the current spatially complex but temporally steady model, is an unsteady, periodic �ow ca-
pability. An unsteady periodic �ow modelling capability opens a range of interesting and
pertinent simulation problems. Examples include, pulse detonation engine (PDE) (Figure 1)
and internal combustion engine ICE applications.
Fluid dynamic unsteadiness, e.g. fan instability=vortex shedding and turbo-machinery �ow

interaction (Figure 2) might also be modelled using this technique. These applications (espe-
cially coupled with a combustion modelling capability) are particularly relevant for military,
space and industrial applications.
Reduction of linear (or linearizable) periodic governing equations to a steady form is a

classical problem in applied mathematics with close ties to method of normal modes [6]. Of
course, the converse, i.e. extension of steady relationships to periodic structure is equally well
founded. We will discuss these classical forms as motivation to our problem. However, we
will see that, although single variable relationships are easily extended to periodic �ow, ex-
tension of systems of equations and (moreover) problems with complex initial conditions are
challenging to extend. The inherent large gradient initial condition singularities (which have
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Figure 1. Pulse detonation engine wave cycle �ow: a �ow characterized
by periodic, unsteady reactive processes.

greatly in�uenced all portions of the DREA code development) once again will place con-
siderable limitations on the use numerical solution methods. Fortunately, however, the unique
combined analytical–numerical form of the DREA formulation provides considerable �exibil-
ity in developing solution methods. Successful resolution of multiple stream periodic �ow in
the presence of large initial gradients will be directly dependent combined analytical=numerical
solution methods [1].
Extension of the DREA mixing model to accept periodic �ow has been facilitated by the

general=canonical nature of the basic DREA formulation. References [1–4] provide a detailed
discussion concerning the derivation of the DREA governing equations by performing an order
of magnitude=perturbation expansion of more complete conservation relationships. A multiple
species (currently three-phases, fuel, oxidizer and product) version of the DREA implemen-
tation [5] uses transport equations for momentum �ux, global mass �ux, total enthalpy �ux
and species mass �uxes, i=1–3, (note an inert phase is available through the mass constraint∑4

i=1 Yi =1 but does not require a transport relationship):

�(x; y)=



�u2 + p

�uH

�u

�uYi


 (1)

with the basic transport equation (notice that it is linear in terms of the �uxes shown in
Equation (1)):

@�
@x
=a(x)

@2�
@y2

+ S0� (2)
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Figure 2. An ejector–mixer nozzle=turbofan deployment. Vortex shedding (splitter plate) and fan stream
initial conditions are characterized by periodic unsteadiness.

the basic problem:

@�(x; 0)
@y

=
@�(x; 1)
@y

=0 (3)

with the initial condition:

�(0; y)=

(
�1006y6hs

�20hs¡y61

)
(4)

for the two-stream case. Formulation and the approximate linearization of the governing trans-
port equations for the DREA model in terms of �ux functions is one of its unique features,
and is described in detail in References [1, 4]. The associated turbulence model is described
in Reference [2]. Detailed information concerning the combustion formulation is provided in
Reference [5], including special linearization and solution procedures required for modelling
combustion in the presence of large initial condition gradients.
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Figure 3. Decomposition of three-stream problem into (2) two-stream problems using superposition of
conservative �ux, e.g. momentum �ux G.

Additionally, previous development e�orts [3] have led to a multiple stream capability that is
now fully functional. This method uses two-stream problems as the fundamental basis to build
through superposition multiple stream problems. This concept is presented diagrammatically
in Figure 3. As such, all the multiple stream and combustion capability is available within
the scope of the periodic �ow implementation.
As presented in Equations (1) and (2) the basic DREA formulation involves governing

equations that may be written for the conservation quantities in terms of a general linear
parabolic equation (the canonical form, e.g. Equation (2)). We emphasize the linear equations
form because it is the linearity and the availability of superposition that permits the extension
of the basic steady analysis in an e�cient and general manner. Indeed it is the linearity
in terms of conservative �uxes (and thereby superposition) of the governing equations that
permits extension of the DREA equations to a far wider range of conditions than perhaps
originally designed.

Recovery of primitive variable from conservative �uxes

For simplicity, we consider a single phase form of Equations (1) and (2) and note that it is
written solely in terms of the conservative �ux quantities:

�(x; y)≡



�u2 + p

�uH

�u


 (4)

To convert, these �uxes into primitive variables, such as (M; u; p; T; �), a local one-dimensional
approximation is applied combined with the de�nitions of the �uxes themselves to compute
the primitive variables [17]. Consider, for example, the velocity may be recovered from the
�ux values using:

�+ 1
2�

[�u(x; y)]u2 − [(�u2 + p)(x; y)]u+ �− 1
�
[�uH (x; y)]=0 (5)
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Figure 4. Schematic of �ow initial conditions.
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Figure 5. Periodic initial conditions for the mixing problem.

A somewhat more convenient form for analytical purposes of Equation (5) that is in terms
of the conservative �uxes and the Mach number may be written:(

�2 − �2

2
− C0

)
M 4 +

(
2�− �2

�− 1 C0
)
M 2 + 1=0 C0≡ (�u

2 + p)2

(�u)(�uH)
(6)

The two roots of the quadratic equation (in terms of M 2) correspond to supersonic and
subsonic solutions for the ejector �ow �eld. Hence, at every point in the �ow �eld, the
two basic ejector solutions are contained. One can also show that where the �ow is choked,
M=1, implies a single solution. This corresponds to a zero discriminant in Equation (5). With
this similarity in mind, it is apparent, that this equation has strong normal shock solutions
embedded within it. This is consistent with our ejector analysis, which for negligible secondary
�ow must recover the classical-one-dimensional normal shock relationships.

Resolution of singular behaviour by analytical decomposition

The multiple stream mixing problems of interest are marked by singular behaviour near the
splitter plate de�ning the initial conditions for these problems. Though an approximation to
the physical problem, we can introduce a step function initial condition as a model for the
actual initial condition. (see Figures 4 and 5).
As illustrated the �ow is discontinuous at the interface between the primary and secondary

streams. This rapid change will cause exceedingly poor performance for a strictly numerical
integration method. Indeed we believe that one of the only possible ways to appropriately

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 40:1163–1186



DIFFERENTIAL REDUCED EJECTOR=MIXER ANALYSIS 1169

deal with this singularity is to introduce a local analytical solution that models the discon-
tinuity. Examples of the use of special basis or trial function (Galerkin terminology) come
from Fletcher [18]. In the problem considered here, rather than developing a local special
di�erencing method and blending it back into the overall system, the linearity of the gov-
erning equation itself was used to perform a global decomposition. Fortunately a solution
method from classical analysis, i.e. Green’s functions, [19] is available which is based upon
distribution theory rather than continuous functions and should provide a useable solution.
The solution is written

�an=
1
2
(�10 − �20)

∞∑
−∞

[
erf
(
y + hs − 2n
(2a∗)1=2x

)
− erf

(
y + hs − 2n
(2a∗)1=2x

)]
+ �20 (7)

Note, that for x�1 this relationship recovers the step input, i.e. Equation (7) (see References
[1, 19] for further discussion). Although Equation (20) is exact, and does not su�er from the
near �eld (x�1) limitations that an eigenfunction expansion solution would, it is still in the
form of an in�nite series. However, in the near �eld, the solution converges very rapidly [1].
Using this rapid convergence what is implemented is a combined numerical and analytical
solution of the problem. Since Equation (2) is linear, a composite analytical=numerical solu-
tion is easily e�ected using superposition. Note, that there is no matching or overlap region
associated with the combined numerical analytical method described here, since both solu-
tions are valid (and active) over the full solution domain. However, the contribution of the
numerical solution near the singularity is very small but increases as the solution proceeds.

Numerical solution component

To obtain a high accuracy solution, implicit i.e. compact �nite di�erence relationships are
used to solve the 1-d parabolic partial di�erential equations. Di�erencing methods of this form
have high accuracy in terms of truncation error, while requiring limited support [20, 21]. The
streamwise marching portion of this problem is di�erenced using both Crank–Nicolson and a
three-point backward fully implicit method. This type of formulation has been applied to a
high e�ciency, combined analytical=numerical �uid �ow model. The implementation of these
discrete numerical relationships, accuracy, grid-re�nement and convergence considerations are
described in detail in References [1, 4].

ANALYSIS

Basic periodic �ow extension of the DREA conservation equations

Recalling that the basic DREA formulation involves governing equations that may be written
for the conservation quantities in terms of the general linear parabolic equation, i.e. Equations
(1) and (2)

@�
@x
=a(x)

@2�
@y2

=a∗x
@2�
@y2
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it is trivial to write the periodic extension of these equations as

1
U
@�̃
@t
+
@�̃
@x
=a∗x

@2�̃
@y2

(8)

where �̃(x; y; t)=Re(ei!t)�(x; y)= cos !t�(x; y). The boundary and initial conditions must be
of this form, i.e. sinusoidal in time.
The new initial conditions (chosen to construct a solution that honours the initial value

described by Equation (9):

�̃(0; y; t)=

{
�10ei!t; 0¡y¡hs

�20ei!t; hs¡y¡H
(9)

Since we are restricted to periodic, unsteady �ow, we do not have a temporal initial condition.
Physically, we can model the unsteady periodic cycle of a system, e.g. an IC engine, but
cannot model the actual ‘start up’ of an IC engine. Additionally, it is important to recognize
the form of Equation (8) requires an approximate linearization that entails an associated level
of modelling uncertainty. See Reference [5] for a discussion for the non-linear terms associated
with reactive �ows.
The unsteady equation is mapped back to a steady equation through the substitution �̃(x; y; t)

=Re(ei!t)�(x; y)= cos!t�(x; y) and simpli�cation (see Reference [22]):

i
!
U
�+

@�
@x
=a∗x

@2�
@y2

(10)

Equations (9) and (10) outline the steady �ow to periodic �ow extension procedure. Though
formally, a straightforward enhancement, implementation of periodic behaviour within the
DREA framework is rather more complex. The major complexities of the extension involve:

• Extension of periodic results to simultaneously model steady base �ow and periodic
behaviour.

• Manipulation of multiple amplitude and frequency initial conditions, i.e. each stream
contains its own periodic behaviour that mixes with other oscillating streams within the
DREA framework.

• Solution of the modi�ed steady equation, e.g. Equation (10). How is solution of the
modi�ed steady equation, especially since there may be considerable di�culty in solving
boundary value problems in the presence of large (virtually singular) gradients, best
performed?

• The previous analyses have been applied directly to scalar equations. What is the best
structure for assigning periodic behaviour to conservation quantities and, through the
decode step, to the primitive quantities themselves.

Periodic �ow and base �ow

Extension of periodic results to model both base �ow and a �uctuating component is made
essentially trivial by the linear nature of the DREA relationships. Indeed, using superposition
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valid for linear problems we can immediately propose a valid solution of the form:

�̃(x; y; t)=Re[(1 + â(ei!t))�(x; y)]=(1 + â cos!t)�(x; y) (11)

where â is a dimensionless, constant amplitude (estimated a priori or by other means to be
a fraction of the base �ow value) and be certain that it will satisfy the DREA conservation
relationships. Note that both amplitude and frequency are dimensionless, i.e. â= âdim=�ave:dim;
!=!dimH=U . Note that unlike many small disturbance linearization concepts, that due to the
formal linearity of the DREA conservation relationships, â need not be necessarily small.

Solution of the modi�ed steady equation in the presence of large gradients

Even the most elementary periodic �ow transformation yields a steady state linear partial
di�erential equation that must solved e.g. Equation (10). Although classical analytical tech-
niques (Green’s functions, eigenfunction expansion [19]) provide a straightforward solution
to Equation (10), to stay within the current DREA construction, we originally considered the
use of a fully numerical solution for this part of the problem.
However as alluded to previously, a strictly numerical integration of a problem like Equa-

tion (10) in the presence of (essentially) discontinuous initial conditions, e.g. Equation (4),
gives very poor results due to the large gradients in the �ow. Since we already have a com-
bined numerical analytical method that works well for IVP’s with discontinuity in the IC,
modi�cation of non-homogenous boundary value problems, BVP’s form would be of great
bene�t. This transformation of a class of non-homogenous BVP (boundary value problem)
to IVP’s is referred to here as the transformation solution method. The development of the
transformation is described in Appendix A.
Using the transformation solution method, solution of the equations like Equation (10) is

simply:

�=e−i(!=U )x�ss(x; y);
@�ss
@x

=a∗x
@2�ss
@y2

(12)

By collecting terms and taking real parts we write:

�̃(x; y; t)=Re
[
(1 + â(ei!t−i(!=U )x))�ss(x; y)

]
=
[
1 + â cos

(
!
(
t − x

U

))]
�ss(x; y) (13)

Equation (13), provides a direct analytical connection between the system of IVP’s in terms of
�ss(x; y, i.e. the steady state solution which is already available using the combined analytical–
numerical method and the periodic �ow extension. It is worth noting, however, that the entire
development to this point has been based upon a single amplitude and frequency. To assume
that all streams, indeed the entire �ow, resonates at the same frequency and amplitude would
partially defeat the mixing capabilities of the DREA code. It is important that the formulation
be generalized su�ciently such that each stream has its own individual periodic behaviour (â
and !). The discussion of this implementation is the subject of the next section.

Multiple streams with individual amplitude and frequency conditions

As shown previously the extension to period �ow for a problem with a single period and
amplitude is straightforward, one merely solves the steady equations for �ss(x; y), applies the
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Figure 6. A two-stream periodic mixing problem with individual stream periodicities and amplitude.

transformation and appends the temporal result. Here we extend our analysis such that each
stream has its own individual periodic behaviour (â and !). Moreover, we will implement
these ideas with the constraints of the currently available steady state DREA
formulation.
Perhaps the best way to describe the multiple stream periodic �ow problem is to consider

a simple two-stream mix problem (shown in Figure 6) analytically using (say) an eigen-
function expansion solution for the elementary (but now periodically, unsteady) two-stream
problem.
Referring to Figure 6 and recalling our prescription for extending steady base �ow to

a single (â and !) periodic behaviour, i.e. solve the steady equations for �ss(x; y), ap-
ply the transformation and append the temporal result, the di�culty is obvious. We now
have two streams, each with its own â and !; how do we correctly ‘append’ the correc-
tion? Fortunately, we can fall back upon the linearity of the problem. We can write down
(at least in an o�ine sense, since the DREA formulation will not easily admit this par-
ticular formulation) two single stream with a single amplitude and period problems, solve
the associated problems and add the results. Figure 7 alludes to the necessary
decomposition.
This decomposition, however, is at a more fundamental level than the DREA code, which

uses the two-stream problem as its fundamental problem, but it is useful to show how periodic
�ows can be completely resolved. The associated analysis for the eigenfunction expansion
solutions is straightforward [19] and without going through the solution process we merely
quote the result. The primary stream problem gives:

�̃1(x; y; t) = ��1 +
∞∑
n=1
an;1 cos

(n�y
H

)
e−a

∗(n�=H)2x2=2

an;1 =−2�10
n�

sin(n�hs)
[
1 + â1 cos

(
!1
( x
U

− t
))]

��1 =�10hs
[
1 + â1 cos

(
!1
( x
U

− t
)]

(14)
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Figure 7. Decomposition of the two-stream problem periodic problem into two single stream problems.

while the secondary stream gives

�̃2(x; y; t) = ��2 +
∞∑
n=1
an;2 cos

(n�y
H

)
e−a

∗(n�=H)2x2=2

an;2 =−2�20
n�

sin(n�hs)
[
1 + â2 cos

(
!2
( x
U

− t
))]

��2 =�20(1− hs)
[
1 + â2 cos

(
!2
( x
U

− t
))]

(15)

The total solution is merely the sum of Equations (14) and (15). Thus, at least formally, one
can write a solution that honours the multiple stream=multiple periodic �ow problem. It is also
worth noting, that the solution space is now proceeding along kinematic wave characteristics,
i.e. MOC of the form: s= t − x=U .
Unfortunately, building multiple stream solutions using single stream superposition is not

the structure of the DREA code. (The DREA code uses two-stream problems as the basis of
its superposition method [3]). Multiple stream problems for N¿2 (N is the number initial
condition streams) are also built on 2-stream basic problems, recall Figure 3, where N=3.
Hence, it is not possible to (easily) use the current DREA formulation or coding to build
multiple stream periodic �ow problems.
However, if one carefully examines the eigenfunction superposition solution, i.e. Equation

(14) plus Equation (15), one notes that the periodicity modi�cations, e.g. the term [1 +
âi cos(!i(t − x=U ))] is directly aligned with the particular scalar for that stream, such as �10
or �20. This can be seen by inspection of Equation (16) which is the sum of Equations (14)
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and (15):

�̃(x; y; t) = ��+
∞∑
n=1
an cos

(n�y
H

)
e−a

∗(n�=H)2x2=2

an =
2
n�

(
�20
[
1 + â2 cos

(
!2
( x
U

− t
))]

−�10
[
1 + â1 cos

(
!1
( x
U

− t
))])

sin(n�hs)

��=�10
[
1 + â1 cos

(
!1
( x
U

− t
))]

hs

+�20
[
1 + â2 cos

(
!2
( x
U

− t
))]

(1− hs)

(16)

Further, the positioning of the appropriate periodic �ow modi�cation terms Equation (16)
provides a motivation behind an e�ective substitution that utilizes the analytical portion of
the combined analytical=numerical DREA method. If one introduces the de�nitions for an
‘e�ective’ initial condition:

�10; e� =�10
[
1 + â1 cos

(
!1
( x
U

− t
))]

�20; e� =�20
[
1 + â2 cos

(
!2
( x
U

− t
))] (17)

then, in terms of these variables that the same steady state problem is recovered.

�(x; y) = ��+
∞∑
n=1
an cos

(n�y
H

)
e−a

∗(n�=H)2x2=2

an =
2
n�
(�20; e� − �10; e� ) sin(n�hs)

��=�10; e�hs + �20; e� (1− hs)

(18)

This close correspondence of the periodic solution in terms of the e�ective initial conditions
with the steady state solution provides a modi�cation to the DREA framework that will permit
multiple stream periodic �ow behaviour; namely:

• Introduce e�ective, i.e. Equation (17), initial conditions, �e� .
• E�ect a steady DREA solution. Note that since these e�ective initial conditions are not
constants, they are actually functions of x and t, it is not possible to e�ectively use the
numerical integration portion of the analytical–numerical DREA method (if one were to
attempt these integrations, it would be necessary to ‘march’ to each new ‘x’ location with
a new initial condition for each step, a very ine�cient proposition. Although the DREA
model does not actually use an eigenfunction expansion based analytical solution, it uses
Green’s functions and the method of images e.g. Equation (7), the prescription remains
completely unchanged. Because the Green’s function expansion is a rapidly convergent
series, one �nds that n¿2 yields an invariant solution. For example, a subsonic, two-
stream mixer with M1=0:22; M2=0:01, gives a variation in the wall velocity, y=H=1
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(the location where convergence of the series is most di�cult) gives 3 digit accuracy for
n=1 and 5 digits for n=2. Supersonic and transonic problems yield similar convergence
rates.

• Note that periodic �ow algorithm relies solely on the analytical solver, as such, the
accuracy of the computation is independent of the grid and grid spacing. Indeed, the
grid represents simply an evaluation location rather than a portion of the solution.

The straightforward modi�cation that we have presented permits us to use the current DREA
implementation while extending the solution to model periodic �ow. Next we discuss possible
(and as we shall see non-unique) ‘inversion’ methods to obtain primitive variables.

Assignment and decode of conservative and primitive period variables for periodic �ows

The previous analyses have been applied directly to single scalar equations (always in terms of
a conservation quantity e.g. �, which represents conservative �uxes such as �u; �u2+p; �uH ,
etc.). As such, it has not been necessary to di�erentiate between assignment of periodic be-
haviour to the conservative quantities and the associated primitive variable. Recalling from
Equations (5) and (6) that these conservative quantities are ‘decoded’ or solved for the as-
sociated primitive quantities, such as, density, temperature velocity, etc. In this section we
discuss possible ‘best’ structures for assigning periodic behaviour to conservation quantities
and, through the decode step, to the primitive quantities themselves.
To extend the conservative quantities to periodic �ow, we must assign periodic behaviour

to the conservative terms, i.e. the diagonal terms in Equation (19):

�(x; y; t) =



(1 + â cos!Gt) 0 0 0

0 (1 + â cos!�uH t) 0 0

0 0 (1 + â cos!�uH t) 0

0 0 0 (1 + â cos!�uYi t)




×



�u2 + p

�uH

�u

�uYi


 (19)

One obvious choice for the periodic terms in Equation (19) is to demand equality of periodic
terms, i.e. (1+ â cos!Gt)=(1+ â cos!�uH t)=(1+ â cos!�ut)=(1+ â cos!�uYi t). This choice,
however, is not well posed when we attempt to use the inversion methods to compute the
Mach number through Equation (6) since

C0=
(G(1 + â cos!Gt))2

((�u)(1 + â cos!�uH t)(�uH)(1 + â cos!�ut))
=

(Gss)2

((�uss)(�uHss))
(20)
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Clearly with equality of periodic �ow, all dimensionless or even scaled quantities, e.g. �uH=�u,
etc. will lose their dependence on periodic �ow, which we deem unacceptable.
A physically based (though still not unique) assignment of periodic behaviour treats the

various primitive=non-conservative quantities such as, u; p; T; � and Yi with a set periodic value.
If one chooses �; u; Yi as fundamental quantities so that


�(x; y; t)

u(x; y; t)

Yi(x; y; t)


=



(1 + â cos(!t))�(x; y)

(1 + â cos(!t))u(x; y)

(1 + â cos(!t))Yi(x; y)


=



(1 + â Re(ei!tt))�(x; y)

(1 + â Re(ei!tt))u(x; y)

(1 + â Re(ei!tt))Yi(x; y)


 (21)

Then from the de�nitions of the conservative quantities, i.e. G; �uH; �u; �uYi it is possible
immediately to obtain appropriate values:


G(x; y; t)

�u(x; y; t)

�uH (x; y; t)

�uYi(x; y; t)


=



(1 + â cos(3!t))(�u2 + p)

(1 + â cos(2!t))p(x; y)

(1 + â cos(4!t))u(x; y)

(1 + â cos(3!t))Yi(x; y)


 (22)

As a corollary to the expressions in Equation (22) we also require that p(x; y; t)=
(1 + â cos(3!t)) while T (x; y; t)=(1 + â cos(2!t)) since we must be able to factor periodic
behaviour from these terms.
With these de�nitions, the periodic conditions are completely speci�ed. Inversion is pre-

cisely as before, except it is no longer necessary to be concerned about the loss of periodic
behaviour.‡ Thus the periodic problem is now fully speci�ed: given the frequency, ! and
amplitude â for each stream, it is now possible to compute the e�ect of periodicity within
the mixing �ow. As such, several examples and parametric problems that demonstrate these
e�ects are investigated.

RESULTS

Here, we discuss results associated with the periodic problem. Validity of the basic steady
DREA implementation is demonstrated in References [1, 2, 4] by comparison with several
simple, single �uid, non-reactive (cold �ow), steady ejector–nozzle experiments [23, 24].
Reference [5] considers reactive �ow mixing problems.

‡Note that it would appear that one again seems to lose periodic e�ects if one considers

(Gei3!t)2

((�uei2!t)(�uHei4!t))
=

(G)2

((�u)(�uH))

but we are interested in applying real components within this relationship, i.e.

Re(Gei3!t)2

(Re(�uei2!t)Re(�uHei4!t))
�= (G)2

((�u)(�uH))
:
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Figure 8. A comparison between the DREA simulation and experimental data of [24]
showing the Mach number pro�le for a slot mixer.

Consider for example second problem is a steady supersonic (Mach 2.5) and, choked
�ow (Mach 1.0) mixing problem studied by [24], Figure 8. This study involves a 2-d mix-
ing layer developed by a 2-d slot ejector. Comparison with experiment is good, however,
the physical location of the shear layer is not exactly predicted. It is suspected, that wave
expansion=compression e�ects around the step are modifying the interface slipline. Rate of
spreading of the mixing layer, which is closely related to the turbulence models used in the
DREA code is discussed in detail in References [2, 25].
Now, concentrating on the focus of this research, i.e. periodic �ow problems, we develop

a series of parametric and code validation problems. Unfortunately direct experimental results
are limited, and we will concentrate on parametric=demonstrative computations to delineate
the limitations and capabilities of the periodic �ow modi�cations. However, the use of pe-
riodic excitation to control (typically enhance) mixing has been the subject of a number of
studies, e.g. [26, 27]. A detailed study that provides mixing data for subsonic, axi-symmetric
jet problems with periodic excitation is discussed by Zaman and Raman [28]. Figure 9 depicts
the centerline velocity versus streamwise distance for �ow with and without excitation.
As shown in Figure 9, the overall trend of increased mixing due to excitation is properly

predicted by the DREA model. Agreement between experiment and the DREA simulation is
moderate for both �ow with and without excitation. Since DREA is a 2-d simulation Cartesian
rather than axi-symmetric, this level of agreement is considered acceptable.
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Figure 9. Comparison between experimental measurement [28] and DREA simulation dimensionless
centerline velocity for �ow with periodic excitation; i.e. !=16:8 and â=0:025 with t=1:0. Flow

without excitation is presented as well for comparison.

To gain a sense of the instantaneous �ow �eld, we consider a simple two-stream periodic
�ow problem as a starting point. Both the primary stream and secondary stream have the
same period and amplitude, i.e. !=0:5 and â=0:025 in Figure 10.
As a useful comparison of the two-stream periodic problem we compare to the same two-

stream steady-state problem in Figure 11.
A simple demonstration of mixing is where the primary stream has period and amplitude,

i.e. !1=0:5 and â1=0:025, while the secondary is steady, i.e. !2=0, and â2=0:0 is presented
in Figure 12. Note that this �ow is analogous with the jet problem, i.e. Figure 8, except the
primary stream area is much smaller than the secondary stream area and the secondary stream
is quiescent.
The periodic extension analysis also includes multiple stream e�ects and reactive �ow

processes. Consider the simple multiple (three stream problem) non-reactive �ow problem
presented in Figure 13:
Finally, we note, the periodic �ow extension is valid for combustion �ows as well. As

an appropriate example, consider a two-stream, SCRAMJET problem with hydrogen burn
analogous to the model discussed by Oevermann [29]. The Mach �eld for this problem is
presented in Figure 14.
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Figure 10. Two-stream subsonic, M1=0:75; M2=0:5 periodic �ow problem Mach
numbers. Both the primary stream and secondary stream have the same period and

amplitude, i.e. !=0:5 and â=0:025 with t=1:0.

CONCLUSIONS

Here we have presented an extension from strictly steady �ow to periodic �ow for the
aerodynamic mixing code DREA (di�erential reduced ejector analysis). Using the fact that
reduction of linear (or linearizable) periodic governing to steady state is a classical prob-
lem, we discussed these forms as motivation to our implementation. However, we con-
cluded that, although simple relationships are easily extended to period �ow, extension of
systems of equations and (moreover) problems with complex initial conditions are chal-
lenging to extend. The inherent large gradient initial condition singularities (which have
greatly in�uenced all portions of the DREA code development) placed considerable limi-
tations on the use of numerical solution methods. Fortunately, however, the unique com-
bined analytical–numerical form of the DREA formulation provided a successful solution
method. Comparison with experimental measurements for jet �ows with excitation show
moderate to good agreement with the simulation. Other �ow �elds are presented to demon-
strate the capabilities of the model. Finally we emphasize that we have retained through
this process the simple, e�cient, extremely coarse grid DREA structure that has been the
original intent of the DREA development e�ort. The simplicity and e�ciency of the
DREA code continue to make it uniquely suitable for its original niche, namely design
and preliminary design environments where more complex and expensive models are
inappropriate.
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Figure 11. Comparison between the Mach number �elds for two-stream subsonic,
periodic problem M1=0:75; M2=0:5; !=0:5 and â1=0:025, with t=1:0 with the

two-stream steady problem, M1=0:75; M2=0:5.
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Figure 12. Mach number �eld for two-stream subsonic M1=0:75; M2=0:5 problem. Primary stream
has period and amplitude, i.e. !1=0:5 and â1=0:025, while the secondary is steady, i.e. !2=0:0 and

â2=0:0 Notice the growth of periodic behaviour in the secondary stream due to mixing.

Figure 13. Mach number �eld for three stream periodic mixing problem, M1=M3=0:25 and M2=0:5.
All amplitudes=0:025, and !1=!3=0:1 while !2=1.
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Figure 14. Mach number �eld for two-stream periodic mixing=combustion problem with M1=1:0,
M2=2:0. The associated amplitudes â1=0:025; â2=0:025 and periodicities !1=1; !2=0:5.

APPENDIX A: TRANSFORMATION SOLUTION METHOD

As alluded to previously, a strictly numerical solution of the source term problems yields very
poor results due to the large gradients in the �ow. Indeed these results are as bad as trying
to solve the IC problem (also called an IVP, initial value problem) strictly numerically. As
such, the proposed, simple-minded splitting cannot be successful, while a more mathematically
substantial method is. The previously described coupled system solution method is just such
a technique. Here we brie�y describe the generic problem with large gradient source terms
and the analogy with discontinuous initial condition problems. This will lead us to consider
a solution method to model large gradient source term problems.
Consider the coupled inhomogeneous boundary value problem:

@u
@x
= a(x)

@2u
@y2

+ S(u; v)

@v
@x
= a(x)

@2v
@y2

(A.1)

with the initial condition:

u(0; y) = 0
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v(0; y) =

(
v1006y6hs

v20hs¡y61

)
(A.2)

The close resemblance to the coupled system problem is obvious, except S(u; v) is not per-
mitted to be a second derivative like vyy which make the use of the coupled solution method
impossible. For simplicity let S(u; v)=v. Our na��ve solution method was to compute (using
the accurate IC solver) v(x; y) and substitute into the ‘u’ equation. However even for this
simple problem, one can see this will fail: : : v(x; y) is virtually discontinuous for x�1 because
it honors the IC in Equation (A.1). Thus, S(u; v)=v will also be virtually discontinuous and
if we could not solve the IC problem numerically, the inhomogeneous source term will be
no better.
Indeed, the numerical solution di�culties that one faces for IC problems are similar to

the di�culty in numerically solving for inhomogeneous source term problems. But this gives
us a strategy to solve source problems. Since the problems are similar, perhaps we can
modify some source term problems into equivalent IC problems. A modi�cation of this form
would be of bene�t, since we already have powerful IVP (initial value problem) solvers. This
transformation of special (but useful for us) inhomogenous BVP (boundary value problem)
to IVPs is referred to here as the transformation solution method.
Consider the simple IVP with the added linear term ‘u’:

@u
@x
= a(x)

@2u
@y2

+ u (A.3)

and the IC (it would yield the trivial solution otherwise):

u(0; y)=

(
u1006y6hs

u20hs¡y61

)
(A.4)

Can Equation (A.2) be placed into the simple heat equation form? The answer is yes. Consider
the substitution u=v(x; y)w(x).

dw
dx
v+ w

@v
@x
= a(x)w

@2v
@y2

+ vw (A.5)

Now splitting the di�erential equation into two GDEs:

@v
@x
= a(x)

@2v
@y2

dw
dx
=w⇒w= ex (A.6)
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Equation (A.6) represents a new transformed system IC problem where we have put the non-
standard form of Equation (A.1) back into standard form (a simple heat equation) using the
new variable u=exv(x; y). Notice as well that the IC for the v(x; y) remains unchanged since
u(0; y)=e0v(0; y).

APPENDIX B: NOMENCLATURE

â periodic amplitude
a(x) turbulence model
a∗ turbulence constant
f canonical scalar function
G momentum �ux, �u2 + p
Gmod modi�ed momentum �ux, �u2 +!p
k reaction rate
h enthalpy, height
H total enthalpy, total channel height
L streamwise length scale
M Mach number
Pr Prandtl number
p pressure
R ideal gas constant
Re real part of complex number
S canonical source term
Sc Schmidt number
T temperature
t time
U average velocity
u streamwise velocity, canonical coupled scalar
v cross-stream velocity, canonical coupled scalar, transformation variable
w generation term, transformation variable
x dimensionless streamwise spatial co-ordinate, x=H
Y mass fraction
y dimensionless cross-stream spatial co-ordinate, y=H

Greek letters

� coupled problem coe�cient
� mixing layer thickness
� ratio of speci�c heats
� kinematic viscosity, stoichiometric coe�cient
! Vigneron parameter, periodic frequency
� scalar �ux
�̃ unsteady periodic scalar �ux
� density
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Subscripts

0 constant value
ave weighted average, e.g. �10hs + �(1− hs)
e� e�ective value
f fuel
i streamwise co-ordinate, species
j cross-stream co-ordinate
o oxidizer
p product
s splitter plate
ss steady state
t turbulent
10 ‘primary’ stream initial condition
20 ‘secondary’ stream initial condition

Superscripts

IC initial condition problem
‘ turbulent �uctuation quantity
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